meter

Climate Protection through Technology– We Help You Achieve Sustainability

Prime Partner in Hydrogen and Gas Analytics

Climate Protection through Technology– We Help You Achieve Sustainability

Acting sustainably means taking future generations into account when consuming raw materials and other treasures of the earth.

In our industry, where everything still revolves around natural gas, the issue of sustainability cannot be emphasized enough. Natural gas is a fossil raw material, and supplies are limited. The current crisis makes this clear to us more than ever.

We at meterQ have therefore dedicated ourselves to this topic and can help you to become more sustainable with our services and our products. In doing so, you will be conserving the resource natural gas, the climate, the environment and ultimately helping to secure our and our children's future. The most important buzzword in this context certainly is hydrogen. How hydrogen can supplement natural gas and perhaps replace it completely in the future is a controversial issue. **meterQ** is at the forefront of research and development in this area.

Reduction of Bypass Flows and Emissions

The fact that we can and must become more sustainable with natural gas is obvious. Us equipment manufacturers have been asked by customers for the last 10 years what can be done to reduce bypass flows or to recycle the gas that flows through the bypasses instead of blowing it into the atmosphere.

To elaborate, gas analyzers are usually installed a few meters away from sampling point at the pipeline. Since each analyzer consumes a fixed amount of gas per analysis, only as much gas (volume) can flow from the line to the analyzer as the analyzer consumes. This results in a fixed velocity and therefore time for the sample to reach the analyzer. The measurement delay or dead time that elapses between taking the sample and sending the result is the sum of the analysis time and the transport time. If You want to reduce the dead time, the only option with a fixed analysis duration is to reduce the transport time. To do this, a bypass is installed which increases the flow rate by allowing additional gas to flow past the analyzer. This gas is vented into the atmosphere.

How much gas is blown off into the atmosphere depends on the one hand on the dead time to be achieved and on the other hand on the physical conditions such as line pressure and distance to the analyzer. In practice, more than 10 times as much gas is usually emitted via bypass than the analyzer itself consumes for the measurement. Returning the gas to the line is not economical since it is reduced to atmospheric pressure at the bypass. Every bypass not only wastes an enormous amount of gas, but also harms the environment, since natural gas is 25 times as harmful to the climate (greenhouse effect) than carbon dioxide.

The first thing to do is to analyse the existing installation, calculate dead time and dead volume and adjust the bypass in such a way that it produces as few emissions as possible and at the same time fulfilling the metrological (custody transfer!) requirements.

For new plants, the same should already be considered at the planning stage and optimally designed accordingly. For this purpose, **meterQ** has developed a tool that makes it possible to calculate dead volume, dead time and the required dead time and the required bypass and information in a one-page protocol. Particularly in the case of existing systems, it usually turns out that there is no optimal configuration. Both the emission of natural gas through the bypass and a significant measurement delay are practically unavoidable.

EINGABEBEREICH Analysendauer Тур Einheit T90-Zeit Messgerät min MGCflex 1 Messgasdurchfluss 25 ml/min # Mesströme 1 Bypass (eingestellt) 50 I/h inge Einheit Einheit Innenmaß Name für Protokoll Entnahme und HD-Leitung m 2 r mm Leitung HDR zu PGC 15 m 2 ømm 30 Leitung Aufbereitung 1 ømm cm Name für Protokoll nheit Hochdruckreduzierung ml Hochdruckreduzierung ml ml nheit Name für Protokoll ml ml Aufbereitung ml

Gesamtzyklus		60	S
empfohlene Bypass Einsellung		1287,50	l/h
Totzeit mit Bypass		25	min
Messzyklen für vollst.		25	
physikalisches	s Totvolumen	wirksames 1	otvolumen
Volumen	Einneit	volumen	Einheit
Volumen 262,8319	ml	21,0265	Einheit
Volumen 262,8319 147,1239	ml	21,0265 0,4414	Einheit I I
Volumen 262,8319 147,1239 10,2356	ml ml ml	21,0265 0,4414 0,0154	Einheit
Volumen 262,8319 147,1239 10,2356 Summe	ml ml ml	21,0265 0,4414 0,0154 Summe	Einheit I I

ERGEBNISBEREICH

Legende	
Wert	Eingabefeld für Eingabewerte
Text	Pulldown Auswahlfeld
Text	Eingabefeld für Text
Wert	Ergebnisfeld
r xx	Innenmaß Angabe als Radius
Ø XX	Innenmaß Angabe als Durchmesser

im ersten block werden die innenvolumina von Leitungen im jeweiligen Druckbereich berechnet. Dabei wird eine Leitung mit gleichförmigem kreisrunden Innendurchmesser narundanalar

In den anderen beiden Blöcken können Volumina angegeben werden. Dabei kann es sich um Einzelkomponenten oder um das Gesamtvolumen einer Baugruppe handeln, wenn sie in einem Druckbereich betrieben wird.

Für die Rechnung werden Diffusionseffekte nicht eksichtigt. Für die Rechnung wird das Gas als ideales Gas

At this point meterQ can help you reduce these bypass emissions or even avoid them completely without accepting negative effects on dead time: instead of using a conventional PGC, use our MGC^{direct}, which is installed directly on the pipeline with its special sampling probe, offering by far the shortest dead time of all custody transfer solutions with no bypass emission at all.

Kommentar

Hochdruckseite

Niederdruckseite

Hochdruckseite Innenvolumen

Niederdruckseite Innenvolume

BEWERTE

Druck

2 1,3 bar(a)

?

?

messer

response time completely without bypass emissions.

Bericht erstellt am 21.02.2023 von Peter Meier

Analysis and Optimization of the Overall Installation

The third measure, which is always possible, and which does not require special hardware, is analysis and optimization of the overall installation. You can make use of the fact that usually not only one but several gas analyzers (besides custody transfer measurement, oxygen sensor, sulfur measurement, dew point, ...) are operated in one installation.

Here, it makes sense to use a common supply line and to arrange the devices sensibly according to the working pressure. This way, analyzer flow rates add up and only a single bypass is needed, if at all, which is much smaller than if each device has to be supplied individually.

We would be happy to evaluate your optimization potential and carry out the conversion at your request.

Furthermore, there are the little things that contribute to sustainability and that we consistently take into account in products and projects. We optimize our installations to save energy and materials where possible.

For example, we will always try to transmit signals digitally over one data line, rather than over many contact lines. We use components and build our equipment to run as energy-efficiently as possible, to be low-maintenance, and to contain as few wear parts as possible.

We build modularly and with recyclable materials so that an existing installation can be easily expanded, adapted or even recycled.

And Our Own Sustainability

Of course, when it comes to sustainability, we don't just look outward, but also improve our internal processes with the aim of becoming at least climate neutral. In other words, we as a company would like to achieve a positive environmental balance and be able to offer you our services without harming the environment and the climate.

We want to minimize our own CO_2 -footprint, we want to reduce our energy consumption, we want to work more efficiently, we want to live environmental awareness.

Therefore, a few months ago we introduced an environmental management system according to ISO 14001, which allows us to evaluate all our processes and optimize them according to environmental aspects. We have decided to first practice the system for one year before we get certified according to ISO 14001 next year.

As an expanding company, we have limited resources but one big advantage: we are very flexible and agile. Sustainability is important to all of us and together we achieve and live it.

Meter-Q Solutions GmbH Robert-Bosch-Straße 10 D-35510 Butzbach

Mobil +49 (0) 151 7010 7397 Tel. +49 (0) 6033 92452-20 E-Mail: info@meterQ.de www.meterq.de